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Theoretical estimates are made of strength distributions after proof testing. Assuming 
that the crack velocity can be expressed as a power function of the stress intensity 
factor, v = A/~  n , an analysis of the amount of strength loss during a load cycle is 
presented for single-region crack propagation. For multi-region crack propagation, a 
numerical analysis is used to describe strength loss. In both analyses, the effects of 
environment and loading rate are studied. For single region crack propagation, the 
strength after proof testing can be represented by two Weibull curves: one with a slope 
of m at high cumulative failure probabil ity levels; the other with a slope of n - 2 at low 
failure probabil i ty levels. Truncation of the strength distribution always occurs as the 
result of proof testing; the truncation strength depends on the rate of unloading. Multi- 
region crack propagation results in a more complicated strength distribution after proof 
testing. Bimodal strength distributions occur as a consequence of region II type crack 
growth (i.e. n = 0). Theoretical results confirm experimental findings that proof tests 
must be conducted at rapid unloading rates and with good environmental control to be 
effective. 

1. Introduction 
The first part of this two part study presented the 
results of an experimental investigation of the 
effect of proof testing on the strength of a set of 
soda-lime-silica glass microscopic slides. Effects 
of stress cycle and test environment were investi- 
gated. Agreement between experimental results 
and theoretical predictions of strength distributions 
after proof testing were obtained when proof tests 
were conducted in inert environments, or when 
rapid rates of loading and short hold times were 
used in the proof tests. By contrast, when water 
was present in the environment and when slow 
rates of loading were used, strength distributions 
were obtained after proof testing that were not 
consistent with simple theoretical predictions. 
At the conclusion of Part I of this study, we noted 
that the lack of agreement between theory and 
experiment may be a consequence of the complex 
crack growth behaviour associated with crack 
motion in moist gaseous environments. We also 

suggested that additional theoretical work can be 
conducted to explore the possibility of complex 
crack growth effects on strength distributions. The 
second part of this study explores this possibility. 

In part II of this paper the effect of complex 
crack growth behaviour on the strength distribu- 
tion after proof testing is explored by the use of 
a modified fracture mechanics approach. Although 
fracture mechanics is used as a basis for under- 
standing proof testing, strength degradation is 
discussed in terms of component strength and 
applied stress, a modification which permits the 
process of strength degradation to be illustrated 
graphically in a relatively simple manner. Because 
this approach is new, a review of the earlier litera- 
ture is presented to achieve a uniform and compre- 
hensive picture of the subject. Strength degra- 
dation resulting from simple crack growth behav- 
iour (i.e. one region crack growth) is treated 
analytically, while complex crack growth behav- 
iour is treated numerically. This study illustrates 
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the types of strength distribution curves to be 
expected from a population of test specimens after 
they have been proof tested. The complex stress 
distributions reported in Part I of this paper for 
soda-lime-silica glass are supported by the 
results obtained in this part of the paper. The 
importance of environmental control and rapid 
unloading during a proof test is also confirmed. 

2. Strength and crack growth behaviour 
The strength of ceramics is determined by the 
presence of small, so-called Grfffith cracks in the 
surface. When stresses reach a critical value, crack 
propagation occurs and ceramics fail by brittle 
fracture. The level of stress required for crack 
propagation depends on the test environment. 
Crack growth usually occurs more easily in the 
presence of water. The effect of water on crack 
growth has been used to explain the well-known 
phenomenon of static fatigue, or delayed failure, 
which is a stress enhanced reaction in which water 
in the environment behaves as the stress corrosion 
agent [ 1]. 

The advent of fracture mechanics provided a 
method of developing deeper insight into crack 
growth processes in ceramic materials [2]. Frac- 

KIC 

q 

I 

K 

Figure 1 Dependence of crack velocity on applied stress 
intensity factor. Schematic diagram of crack velocity data 
indicating three regions of crack growth. Boundaries of 
these three regions are given by  specific values o f K  I (Ko, 
KI, K2, KIc) and by a critical value of the crack velocity 
( V:c). 

ture mechanics also offers the possibility of rela- 
ting fundamental crack-growth data to strength 
data, so that techniques of assuring the reliabili- 
ty of structural materials can be developed [3]. 
Data obtained on ceramic materials by fracture 
mechanics techniques provide a relation between 
the crack growth velocity, v, and the driving force 
for fracture, the stress intensity factor, KI. In 
soda-lime-silica glass, the crack velocity is 
dependent on both the applied stress intensity 
factor, KI, and on the amount of water in the 
environment. The three regions of crack growth 
(shown schematically in Fig. 1) depend on the 
amount of water in the environment and the 
stress intensity level at the crack tip. Regions I 
and II result from a stress corrosion reaction 
between glass and water. Region I represents 
reaction rate limited stress-corrosion cracking; 
Region II represents transport rate limited stress- 
corrosion cracking. Region III represents environ- 
ment independent fracture that depends only on 
the structure of the glass, and is not observed for 
all glass compositions. The scientific significance 
of this type of data has been discussed at length 
elsewhere, and will not be repeated here [4]. For 
purposes of the present paper, this type of data 
can be used to calculate the fracture strength of 
glass or other ceramic materials after they have 
been subjected to a proof test. 

Crack propagation data can be used to estimate 
the amount of  crack growth occurring in a compo- 
nent that is subjected to an applied stress. Given 
an initial measure of the crack length, the change 
in crack length can be estimated from the applied 
load, and a functional relation between the crack 
velocity, v, and the stress intensity factor, KI 
[i.e. v = v(KI)]. For a uniform applied stress, o, 
and a crack length a, KI is given by 

K I ~- oYx/a, (1) 

where Y is a geometric constant. If the relation 
between v and K I has the form v=AK~,  then 
crack growth during a stress cycle can be deter- 
mined analytically and the strength of a component 
after a random stress cycle can be obtained. If the 
relation between v and KI does not have a simple 
form (Fig. l) then the strength of a component 
after a random stress cycle can be obtained 
numerically. In either case, failure occurs during 
the stress cycle when the stress intensity factor 
reaches a critical value, KIc , for rapid fracture. 

Quantitative estimates of the amount of crack 
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growth during a stress cycle can be used to evaluate 
the strength of  a component at any point in the 
cycle. The fracture strength, S, at any time during 
the cycle can be defined in terms of the crack 
length, a, and the critical stress intensity factor 
KIC, from Equation 1" 

S = K m / Y \ / a .  (2) 

If  the stress, ~, equals the strength, S, at any point 
in the cycle, then K1 = Kin, and failure occurs. By 
evaluating the effect of a stress cycle on strength, 
it is possible to calculate theoretical Weibull proba- 
bility curves, which can then be compared with 
experimental ones obtained from proof test studies. 
Furthermore, by using a numerical procedure to 
evaluate the strength after a load cycle, the effect 
of multi-region crack propagation can be taken 
into account. 

The strength degradation that occurs during a 
stress cycle can be represented by a relatively 
simple diagram on which are plotted simultaneously 
the strength of a component and the applied stress 
at any time during a stress cycle. Fig. 2a gives a 
schematic representation of a strength degradation 
diagram which is based on the assumption that 
only one region of  crack growth contributes to 
reduction of component strength. The diagram 
represents a typical proof test cycle. The applied 
stress on the diagram is represented by the curve 
labelled ~ which consists of three straight lines: 
one line representing a constant rate of stress 
increase during the stress cycle; the second, a 
horizontal line representing a hold time during 
the proof test; the third line representing the stress 
reduction as the proof test cycle is completed. 
Although the diagram shown in Fig. 2a is for a 
simple proof test cycle, any stress cycle can be 
represented in a similar way. 

The strength of components during a stress 
cycle is illustrated in Fig. 2a by curves labelled, 
S~, $2 and $3. Each of  these curves represents 
components having different initial strengths 
(i.e. strengths before the start of the proof test). 
As the stress level in Fig. 2a is increased (curve a), 
cracks present in specimens increase in size, 
resulting in a gradual decrease in strength. Strength 
degradation occurs most rapidly as the stress, a, 
approaches the strength of the specimen. For 
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Figure 2 Schematic diagram of strength degradation maps 
for soda.lime-silica glass. (a) Single region crack 
growth. Curve labeled a gives the applied stress as a 
function of time. Curves labeled $1, S~, S 3 give the 
strength as a function of time starting at different initial 
strength levels. (b) Three regions of crack growth (as in 
Fig. 1). Curves labeled !:o, ~ ,  222 and cr in this t-gum 
correspond to K o, K 1, K 2 and KIC of Fig. 1. The curve 
labeled S gives the strength degradation as a function of 
time. 

specimens with initial strengths, S~, much greater 
than the maximum applied stress, little strength 
degradation occurs during the load cycle. How- 
ever, when the initial strength, $2, is less than or 
approximately equal to the maximum applied 
stress, the specimen breaks during the test, and the 
breaking stress is tess than that which would have 

*As def'med in Equation 2, the strength is simply related to the length of  the critical flaw that causes failure, In 
operational terms, S is the inert strength at any point of the stress cycle. It is the breaking stress that would be 
measured ff the component could be loaded to failure in such a way that suberitical crack growth did not occur at all 
during the strength test. 
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been measured in the absence of crack growth. 
Breakage during the proof test can also occur 
when the initial strength, $3, is greater than the 
maximum applied stress provided sufficient crack 
growth occurs during the stress cycle. 

The effect of multi-region crack propagation 
can also be represented on this type of diagram. 
The fines, labelled ~;o, Z~ and ~2 in Fig. 2b, 
represent the strength of components at the 
boundaries that separate the different regions of 
crack propagation (Fig. i). For a given applied 
stress, these boundaries define the range of 
strengths that lie within each region of crack 
growth. The position of the boundary lines in 
Fig. 2b can be evaluated from the values of KI in 
Fig. 1 that define the limits of each region of 
crack growth (i.e. Ko, Ks, K~). For example, the 
curve I21, that corresponds to the boundary 
between regions I and II in Fig. 1, KI = K1, is given 
in Fig. 2b by 121 = a(Kic/K1), which is obtained 
from Equations 1 and 2 by setting KI = K1 and 
S = 121- Thus, the boundary fines in Fig. 2b are 
proportional to or, and since the proportionally 
constant, KIn~K1, is greater than 1,122 is greater 
than the applied stress, (7. In a similar way, the 
boundary line for Ko is given by ~0 = a(Kic/Ko) 
and that forK2 is given by 2; 2 = o(Km/K2). 

During a proof test cycle, the value of the stress 
intensity factor at the most severe flaw crosses 
from one region of crack propagation to the next 
in Fig. 1 as the crack gets longer. At the same time 
the strength goes from one region of crack growth 
to the next each time the curve in Fig. 2b marked 
S crosses the boundary lines. At each boundary, 
both the slope and value of the strength curve 
are continuous.* Again, fracture occurs spon- 
taneously when the strength curve touches the 
stress cycle boundary (i.e. when cr = S). In later 
sections of the paper, specific examples of these 
diagrams will be given. 

3. Single region crack propagation 
To understand the types of curves obtained on 
strength degradation maps, it is worth exploring 
single-region crack propagation. An exploration 
of this simple case is also useful for quantifying 
the basic types of curves that are to be expected 
in failure distributions and strength histograms. 
Some of the subject matter presented here has 

been discussed earlier, [5 -11] ,  but the treatment 
presented here is somewhat simplified and the 
results are more complete. As will be shown, this 
simplification is the result of considering subcritical 
crack growth from the point of view of strength 
degradation rather than crack length. New insight 
into the strength degradation process is obtained 
by this approach. 

For single-region crack propagation, an ana- 
lytical solution can be obtained and used to plot 
strength degradation diagrams, Weibull diagrams 
and strength histograms. In later sections of the 
paper, examples of such diagrams will be presented 
for a variety of crack propagation environments. 
These diagrams will be used both as a means of 
evaluating the effect of stressing rate and stress 
cycle on strength and as basis for comparison 
with more complex multi-region crack propa- 
gation behaviour. 

The rate of strength degradation can be obtained 
by differentiating Equation 2 with respect to time 

dis/at = -- (Kic/2Y)a-3/Z(da/dt) 

= - ( r 2 / 2 K ~ c ) S 3 v ( K )  (3) 

Thus, the rate of strength degradation depends 
only on the strength, the crack velocity and the 
materials parameter KIC. Expressing the crack 
velocity as a simple power function of the stress 
intensity factor 

V = AKI n = AK~c(a/S) n (4) 

the rate of strength decrease becomes 

dS/dt = -- (A YZK~c-2/2)(o/S)nSa (5) 

This equation gives the slope of the strength 
degradation curve at any point on the strength 
degradation diagram (Fig. 2). Provided appropriate 
values of A and n are used, Equation 5 is applicable 
to each region of behaviour in multi-region crack 
growth exposure. As will be shown below, this 
finding has important implications in determining 
the minimum strength of a set of components that 
have been proof-tested. For a given value of a/S, 
the rate of strength degradation, -- dS/dt, increases 
as n increases. Note that when n = 0 (region lI 
crack growth) dS/dt  decreases in absolute magni- 
tude as the strength decreases, equaling zero as S 
approaches zero. Consequently, dS/dt exhibits 

*As is shown in Equation 3, the slope of the strength curve depends on both [he crack length and the crack velocity. 
Since both of these are continuous throughout the test region, the slope must be continuous. 

2285 



positive curvature when n = 0.* For region I 
(n 1> 15) or for region III (n ~> 100) crack growth, 
however, dS/dt exhibits strong negative curvature. 

For any load cycle, Equation 5 can be integrated 
analytically to provide a relation between the 
initial strength, Si (i.e. before proof testing), and 
the strength, S at any time, t, during the proof test 
cycle. 

t t *  

_ = _ ( 1 / B ! J  ~ o(t) ndl, (6) 

where (l/B) = ( n - -  2)AY2K~c-2/2. The amount 
of strength degradation during a stress cycle 
depends only on the integral given on the right 
hand side of the equation, so that the strength 
degradation can be determined for any stress 
cycle provided the applied stress, o, is known as a 
function of time [6]. 

For a typical proof test, a component is loaded 
at a constant loading rate, hi, held at the proof 
load, %,  for a time tp, and then unloaded at a 
constant rate, du. The times for loading, tl, and 
unloading, tu, the specimens are given by 
h = Op/Ol and t~ = % / d u .  Integrating Equation 6 
for a typical load cycle then gives the following 
equation for the final strength, Sf [7] 

S~'-2 = S~-2 

- - (1 /B)[o~tp  + a~+'(1/b,  + 1/du)/(n + 1)1 

(7) 

for any component that does not break during the 
proof test. 

The development of adequate proof testing 
procedures for ceramic materials requires the 
strength distribution after proof testing to be 
well characterized, especially in the low strength 
regime. This characterization is especially neces- 
sary when fracture and/or crack propagation 
occurs during the unloading cycle of  the proof 
test. To characterize fully the strength distribu- 
tion after proof testing it is necessary not only to 
know Sf (Equation 7), but also to know the 
breaking stress of those specimens that fail during 
the proof test. This step is needed for the determi- 
nation of the minimum survival strength after the 
proof test. 

The breaking stress, o . ,  of those that fail 
during the unloading portion of the proof test 
can be obtained from Equation 6 by setting 
S = a. .  The upper limit of integration of Equation 

*Note, this conclusion holds for all n < 3. 
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Figure 3 Single region crack propagation. (a) Definition of 
critical initial strength, Si*, minimum failure stress, 
Cl,min , and minimum strength, Sfmin , after the proof 
test. Specimens with initial strengths greater than Si* will 
survive, while those with strengths less than Si* will fail. 
Equal loading and unloading rates during the proof test 
axe assumed in this diagram. (b) Theoretical strength 
distribution after proof testing. The curve is a graphical 
representation of Equation 18. As discussed in the text, 
the truncation strength depends only on the rate of 
unloading, du, the critical stress intensity factor, KIC and 
the crack propagation parameters, n and A. 

6 is then equal to t = Op/61 + tp + (% -- o.)/6u, 
which is the total time to failure during the proof 
test. The equation so obtained is given by 

o~ -2 -- (1/B)og,+'/(n + 1)6u = Si ~-? 

--(1/B)[o~,tp + Ot~+l(1/r + 1/6u)/(n + 1)]. 

(S) 

There are now two equations i.e. Equations 7 
and 8, that describe specimen behaviour during a 



proof test. Equation 7 gives the strength, St, of 
components that pass the proof test cycle, whereas 
Equation 8 gives the breaking stress, o . ,  of compo- 
nents that do not pass the proof test cycle. Both 
equations are expressed in terms of the load cycle 
parameters (%, 61, 6u, tp), the crack propagation 
parameters (B and n) and the initial component 
strength, Si, before the start of the proof test 
cycle. If the initial strength, Si, is relatively high, 
the component will pass the proof test; whereas 
if the initial strength is low, the component will 
break during the proof test cycle (Fig. 3a). There 
is a critical initial strength, Si*, that will separate 
components that break, Si < Si*, from those that 
survive, Si > Si*, the proof test cycle. The compo- 
nent that has an initial strength that is infinitesi- 
mally greater than Si* will have a final strength, 
S~min, that forms a lower bound for the strengths 
of components that pass the proof test (Fig. 3a). 
Sfmin is important because it represents the lowest 
possible strength of components that have been 
subjected to a proof test cycle. Sf~n  is in effect 
the truncation strength for the strength distribu- 
tion after the completion of the proof test. By 
similar reasoning, the component that has an 
initial strength that is infinitesimally less than Si* 
will break at a stress, g.rain, that forms a lower 
limit to the breaking stresses of components that 
fail during the unloading cycle (Fig. 3a). 

A relationship between the minimum strength, 
S ~ n ,  after the proof test cycle, and the minimum 
breaking stress, o.rain, can be obtained by setting 
St = Si* in Equations 7 and 8 and equating the left- 
hand sides of these equations 

&m~n " - 2  = O*~tnn-2 [ I  - -  (llB(n + 1 ) ) ( o , 3 ~ n / 6 . ) ] .  

(9) 
Equation 9 can be simplified by expressing 

o.rain in terms of the unloading rate. During 
unloading, the strength degradation curve that 
characterizes Sfmin will approach within an infinite- 
simally small distance of the stress curve, but will 
fail to touch it. At the point of closest approach 
of the two curves, the slope, dS/dt, of the strength 
curve will be equal to the slope, -- 6u, of the stress 
curve. By letting dS/dt = - 6u and a = S = O.mi n 
in Equation 5, the following equation is obtained 

O.mi n = [B(n-- 2)du] va. (10) 

By substituting this relation for 6~ in Equation 9 a 
simple equation is obtained for the minimum 
strength after proof testing 

Sfmin = O,min [31(t/ q- 1)1 1/(n-2) (11) 

One concludes from this equation that the strength, 
Sflnin, of a component that just survives the proof 
test is always less than the breaking stress, O*rnin, 
of one that just breaks during the proof test. 
Because n for most ceramic materials is large, 
> 10, Sfmin/O,mi n is normally greater than 0.85. 

Equation i0 can be written in an alternative 
form that is useful when relating the truncation 
strength, Sfmin, to parameters that describe crack 
growth. By expressing B in terms of the crack 
growth parameters A and n, and by defining a 
limit crack velocity (Fig. lb), Vic = A K ~ ,  the 
following alternative representation of Equation 
10 is obtained 

o.rain = [(2duKIZc)/(VIcY2)] lIB. (12) 

From Equations 11 and 12 we note that the 
truncation strength, Strain, depends only on the 
unloading rate, 6u, the critical stress intensity 
factor, and the limit crack velocity, Vm, which 
is determined by the crack propagation para- 
meters, A and n. Therefore, the truncation strength 
does not depend on the proof test level, the time 
at load, or the loading rate. If 6u > 0, Equations 
1 1 and 12 imply that proof testing always truncates 
the strength distribution. The higher the unloading 
rate, 6u, the greater is the strength level, Sfrnin, 
at which strength truncation occurs. Fracture 
during the unloading part of the cycle can be 
avoided provided the unloading rate is sufficiently 
great that a.rain calculated from Equations 10 
or 12 is greater than the proof test load, %. This 
condition for truncation was noted earlier by 
Evans and Fuller [7] from other considerations. 
However, even if O',min ~ 6rrn , strength degradation 
will still occur during unloading so that Sfmtn will 
be less than % (Equation 11). Finally, since the 
only crack growth parameters that influence 
(/*rain are those that occur when V = Vic, 
Equation 12 should also apply to multi-region 
crack growth, for which the intersection of the 
region III curve with KIC (Fig. lb )normal ly  
determines V m. 

4. Single region crack propagation: 
statistical parameters 

Since proof testing modifies the initial strength 
distribution, a discussion of the shape of the distri- 
bution curve that results from proof testing is 
important. The treatment of strength degradation 
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given above provides all of  the necessary informa- 
tion to determine the effect of a stress cycle on 
the strength distribution. The change in strength 
during the proof test can be determined from 
Equation 7, while the change in probability can be 
determined from simple probability theory. There- 
fore, if the inital strength, Si, is known as a function 
of the initial cumulative failure probability, Fi, 
the strength after prooftesting,S~, can be evaluated 
in terms of the cumulative failure probability, Ft, 
of  the components that pass the proof test by the 
use of simple transformations of both strength 
(Equation 7) and failure probability. This approach 
to estimating the effect of proof testing on the 
strength distribution is illustrated below for a 
two-parameter Weibull distribution. Although the 
approach is not limited to Weibull statistics, this 
form of extreme value statistics is easy to use and 
provides a relatively accurate description of the 
strength distribution for brittle materials. Two 
parameter Weibull statistics can be easily incor- 
porated into the present treatment of  proof 
testing, so that strength distributions after p roo f  
testing can be expressed in terms of statistical 
parameters [3, 7, 10, l l ] .  

Weibull statistics relate the cumulative failure 
probability, F, to the strength, S, by the following 
standard equation* [12] 

I n ( I n ( I - - F )  -1) = ra in(S /So) ,  (13) 

where m and So are parameters that are determined 
from experimental data by a least-squares fit or 
by other methods of estimation [13]. For simpli- 
city in succeeding calculations let ln(1 - - F ) -  1 - Q .  
Note that for small values of the failure proba- 
bility Q = F  ( F < 0 . 0 1 ) .  If Qi is determined by 
the initial strength distribution before proof 
testing, then Equation 13 can be simply expressed 
as 

Qi = (Si/So) m. (14) 

From probability theory the initial failure proba- 
bility (as characterized by ai) can be related to the 
failure probability after proof testing (as charac- 

terized by Q0 and the failure probability of the 
component that just fails during the proof test 
(characterized by Qo).t  

Q; = a t  + Qp. (15) 

By substituting Equations 14 and 15 into 
Equation 7, the strength Sf, after a proof test 
can be expressed in terms of the cumulative 
failure probability (represented by Qf) 

(St~So) "-2 = (Qt + Or)  ~--~ - (1/B)So r 

"+'(1/6,  + l/,~,.,)/(n + 1)]. x [o~,~p + m, 
(16) 

Equation 16 can be simplified considerably by 
noting that for the specimen that just survives 
the proof test cycle St -+ Strain and Qt -+ 0. Sub- 
stituting for Sf and Qf in Equation 16, the fol- 
lowing expression is obtained for the last term on 
the right of Equation 16 

(1/B)So("-z)[O~tp + a~,+'(1/51 + 1/6u)/(n + 1)] 

= Q p ~  _ (S tmin/So) , -2 .  (17) 

Substituting this expression into Equation 16 
eliminates the term contained in the square 
bracket so that 

n -2 n -2  
(St /So)n-2 = (Q~ + Qp) m _ Q v  m 

-t- (Sfmin/S o )n  - 2 .  ( 1 8 )  

Equation 18 illustrates the important conclusion 
that once Sfrnin, So, m and n are determined the 
strength distribution after a proof test can be 
determined simply by counting the number of 
specimens that break during the proof test.$ 

For single region crack growth, Equation 18 
gives a complete description of the type of proba- 
bility curve expected for the strength distribution 
after proof testing. It is straightforward to show 
that the strength distribution after proof testing 
is given by a trimodal curve, each part of which 
corresponds to a different range of initial strengths 

*F is obtained by ordering a set of strength data. F is given by r/(N + 1) where N is the total number of datum points 
and r is the position of each point in the ordered set. r = 1 for the lowest strength value, r = 2 for the second lowest 
and so forth. 
t Equation 15 follows from the probability relation Ff = (F i -- Fp)/(1 -- Fp) whereFf is the failure probability after proof 
testing, F i is the initial failure probability evaluated from Equation 13 and Fp is the proof test failure probability [ 10]. 

$Sfmln approaches zero as the unloading rate becomes vanishingly small (Type III distribution [7] discussed in part I 
of this paper), and has an upper limit when Sfrain = ap (i.e. infinite unloading rate, for which no crack growth occurs 
during the proof test, Type II distribution [7, 10] discussed in part 1 of this paper.) 
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and corresponding failure probability (Fig. 3b). 
When strengths before testing are high, little crack 
growth occurs during the proof test, and as a 
consequence, strength degradation resulting from 
the proof test is slight (Fig. 2). In quantitative 
terms, the strength after the proof test will be 
much greater than the proof test stress (Sf >> as), 
so that Qf >> Qp. If the final strength is also much 
larger than the truncation strength (Sf >>Sfrcan), 
then the strength distribution after the proof test 
(calculated from Equation 18) is given by 
(S jSo)  m =  Qf, which is identical to the initial 
distribution (Equation 14). This portion of the 
strength distribution is indicated by a slope of 
m in Fig. 3b. 

For an intermediate range of initial cummula- 
tive failure probabilities, strength degradation 
resulting from crack growth significantly alters 
the strength distribution after proof testing. If 
the final strength is significantly greater than the 
truncation strength (Sf>>S~in), and if the 
failure probability after proof testing, Qf, is less 
than the failure probability, Qp, calculated from 
Qp = (op/So) m (i.e. Qf <~Qp), then the strength 
distribution given by Equation 18 can be simpli- 
fied by expanding (Qf + QD) (~-~)/m as a Taylor 
series. The final distribution for the intermediate 
probability range is then given by 

Qf = [m/(n - 2)] Q(pm +2-n)/m(sf/So)(n-2), 
(19) 

which hnplies that the strength distribution after 
proof testing can be represented by a straight line 
with a slope m' = n -- 2 (Fig. 3b). Finally, in the 
lowest probability range, the strength distribution 
must be truncated so that Sf = S~in ,  where Sfmin 
is given by Equation 11. 

In summary, the strength distribution after 
proof testing can be described by two Weibull 
curves (Fig. 3b): one at higher probabilities having 
a slope of m; the other at lower probabilities 
having a slope of n -  2. As indicated in Fig. 3b, 
the low probability curve is truncated at a strength 
given by Sfmin. 

5. Single region crack propagation: 
examples of strength degradation maps 
and Weibuil diagrams 

The equations presented in the previous sections 
will now be illustrated for the special case of single- 
region crack, propagation in soda4ime-silica 
glass. Experimentally determined values of A and 

n were selected to represent crack propagation in 
air (50% r.h.) and dry nitrogen gas (~ 0% r.h.). To 
illustrate the effect of unloading rate on strength, 
two values (IMPasec -1 and lO00MPasec -1) 
were used for each environment, the loading rate 
was conveniently set equal to the unloading rate 
and the hold time was set equal to zero. The 
strength/stress axes of the resulting strength 
degradation maps shown in Figs. 4 and 5 are 
represented in terms of the reduced variables 
S/So and o/So, where S is the strength, o is the 
stress and So is the Weibull strength measured in 
an inert environment. The time axes in these 
figures are plotted in terms of the reduced variable 
t iT where T is the total time of the proof test 
cycle. 

Figs. 4a and b illustrate the predicted effect of 
moist air (50% r.h.) on the strength of soda-lime- 
silica glass specimens for the loading conditions 
just specified. The strength degradation map for a 
loading rate of 1 MPasec -t (Fig. 4a) illustrates a 
number of features discussed in the previous 
sections: at high initial strengths relatively little 
strength degradation occurs during the stress 
cycle; at low initial strengths, the strength decreases 
relatively rapidly once the stress reaches a sizable 
fraction of the initial strength. Over a relatively 
narrow range of initial strengths that separate 
those specimens that fail from those that survive 
the proof test, a dramatic change in the shape of 
the strength degradation cm've is observed. The 
strength curve bends over as the unloading cycle 
begins, and the strength appears to decrease at a 
relatively constant rate as the stress is decreased 
further, Specimens with initial strengths that are 
just above the critical value survive the proof 
cycle; initial strengths that are just below critical 
fail the proof cycle. Note that significant strength 
degradation occurs for specimens that just pass the 
proof test and that a significant number of failures 
can occur during the unloading portion of the 
proof test cycle. The truncation strength for con- 
ditions given for Fig, 4a was S~mi~ = 0.035 So. 

The effect of higher loading rates on strength is 
shown in Fig. 4b. As call be seen from this figure 
increasing the loading rate to 1000MPasec -a 
decreases the value of Si that just survives fracture. 
Also, the value of the truncation stress S f r n i  n = 

0.35So is increased by one order of magnitude as 
the loading rate is increased by three orders of 
magnitude, For tests in dry nitrogen (Figs. 4c and 
d) strength degradation curves are similar to those 
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Figure 4 Region I crack growth: schematic diagrams of  strength degradation maps for soda-lime-silica glass. (a) loading 
rate: 1 MPa sec -1 . Test in air; 50% r.h. (n = 19.7, In A = - -271.9)  (b) loading rate: 1000 MPa sec-1.  Test in air, 50% 
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dry air, 0.01% r.h. m = 7.7;So = 126.9 MPa;K o = 0 MPa-rn in ;KIC = 0.75 MPa-m in , Op = 0.65 So. 

just discussed, however because water is not 
present, strength degradation is less for all levels 
of initial strength, and far fewer components break 
during the proof test. 

Fig. 5 illustrates the effect of  environment and 
loading rate on the strength distribution after 
proof testing. For all test conditions, the curves 
obtained for specimens that survive the proof test 
approaches the curve that represents the initial 
strength distribution (the straight lines in Fig. 5). 
At low probability levels the curves for the proof 
test survivors approach a slope of n - - 2 ,  as 
expected. For the test conditions selected, the 
truncation strength occurs at a value too low to be 
represented on Fig. 5. The effect of loading rate 
on the strength distribution after proofing can be 
discerned by comparing Figs. 5a and b for the 
moist environment. Because far fewer specimens 
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break at the high loading in the moist environment, 
( ~ 7  per cent for 1000MPasec -1 against 
~ 9 8  per cent for 1MPasec-1), the low pro- 
bability portion of the survival curve shown 
in Fig. 5b has shifted to lower strength values 
relative to the curve in Fig. 5a. This effect 
of loading rate on the survival curve is 
greatly suppressed in dry environments, as can be 
discerned by the fact that virtually the same 
survival curve is obtained at low and high loading 
rates (Figs. 5c and d). For the same loading condi- 
tions, proof testing in dry envhonments greatly 
reduces the number of failures during the proof 
test (~  2.9 per cent at '1000MPasec -1 and ~ 4.5 
per cent at 1 MPasec-1). Furthermore since the 
slope of the survival curve increases at low failure 
probabilities, the probability of  failure at a given 
strength after proof testing is greatly reduced by 
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Figure 5 Region 1 crack growth: schematic diagram of strength distribution after proof testing for soda-lime-silica 
glass. (a) loading rate 1 MPa sec-1. Test in Air, 50% r.h. (b) loading rate t000 MPa sec- i .  Test in air 50% r.h. (c) loading 
rate 1 MPa sec- 1. Test in Air 0.01% r.h. (d) loading rate 1000 MPa sec- 1. Test in air 0.01% r.h. (Experimental constants 
constants used for this figure are given in Fig. 4.) 

using a dry environment for the proof test, thus 
confirming the importance of environmental 
control during proof testing. 

6. Multi-region behaviour: examples of 
strength degradation maps and Weibull 
diagrams 

Multi-region crack propagation cart, in principle, 
be handled by the same mathematical techniques 
discussed in Sections 2 and 3. Equation 7 would be 
applicable within each region of crack growth, 
with appropriate values of A and n being used to 
describe crack growth behaviour. As the strength 
degradation curve passes between two regions 
of crack growths, boundary conditions require 
that both the strength and the slope of the 
strength degradation curve (dS/dt) be continuous. 

Given the initial strength, Equation 6 can be used 
to estimate either the final strength (if the strength 
curve does not intersect the boundary line 
between Region I and II), or the strength at the 
intersection of the boundary. Determination of the 
strength at the intersection with the boundary 
requires an interative procedure to be applied to 
Equation 6 because both the limits of integration 
of Equation 6 and the strength depend on the 
point of intersection of the strength curve with 
the boundary. Once the strength at the boundary 
is determined, this same procedure can be repeated 
to estimate the strength at other boundaries of the 
strength degradation map. It is worth emphasizing 
that, depending on the initial strength, a strength 
degradation curve can either exit from a region of 
crack growth by going to the next region (i.e., 
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Region II to Region III), or by going back to the 
previous region of crack growth, (i.e., Region II 
to Region I). Because of  these complexities, 
strength degradation maps are obtained more 
easily by direct numerical integration of crack 
propagation data. 

The computer routine used here to investigate 
multi-region crack propagation is based on a direct 
integration of Equation 3, assuming that the rate 
of crack growth is controlled by Equation 4. Given 
an initial strength, the crack length can be deter- 
mined from Equation 2. The stress for crack 
growth determined from the stress cycle is then 
used to calculate the crack velocity from Equation 
4. For a time increment, dt, the change in crack 
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t;?gure 6 Multi-region crack growth:  Air 50% r.h., 
loading rate: 1 MPasec -1 (a) s t rength  degradat ion map. 
(b) S t rength  d is t r ibut ion  af ter  p r o o f  test. Crack g r o w t h  
parameters  for  Fig. 6 to 9: Region I, n = 19.7, In A = 
- - 2 7 1 . 9 :  Region II, v =  1X 1 0 - * m s e c  -1 ;  Region III, 
n = 120.9, I n A  = - -  1641.4. Weibull parameters  for  
figures 6 t h rough  9: S O = 137.9MPa,  m = 8.4. Other  
cons tan ts  for  Fig. 6 to 9: KIC = 0.75 MPa-m 1/2 ; Ko  = 
0 MPa-m ~]2 ; ap  = 0.65 S o. 

length, da, during dt is determined from the muck 
velocity, da = vdt. Finally a new length, a + da, is 
used to calculate a new strength, which completes 
one iteration of the computer cycle. By repeating 
the calculation many times, the rate of change of 
strength with time can be determined. At the end 
of each cycle, a comparison is made between the 
calculated strength and boundary-value conditions 
(see Fig. 2b) to determine the appropriate crack 
growth parameters that are applicable (i.e., the 
correct region of crack growth). If the condition 
S = a, is attained fracture is assumed to occur. 
This numerical method was used as a subroutine in 
a larger program to obtain strength degradation 
maps, Weibull diagrams, and strength histograms. 
These diagrams demonstrate the effects of multi- 
region crack propagation on the strength of 
materials. As will be shown in a comparison of 
multi-region maps with their counterparts described 
in Fig. 4, Region II crack growth behaviour has a 
significant effect on the appearance of these 
diagrams. 

The main features of strength degradation in a 
moist environment (air, 50 per cent r~h.) are shown 
in Figs. 6 to 8. When specimens are loaded and 
unloaded relatively slowly (1 MPasec-1), both the 
strength degradation map (Fig. 6a) and the Weibull 
plot (Fig. 6b) look similar to those obtained for 
single mode propagation in moist nitrogen gas, 
(50 per cent r.h., Figs. 4a and 5a) By contrast, at 
high loading rates (1000 MPa sec- ~), the strength 
degradation map (Fig. 7a) and the Weibull diagram 
(Fig. 7b) are nearly identical to those obtained for 
single mode propagation in dry nitrogen. Thus, the 
distribution after proof testing seems to be deter- 
mined mainly by Region I crack growth when the 
rate of loading is slow, and by Region III crack 
growth when the rate of loading is high. 

At intermediate loading rates, Region II crack 
growth behaviour dominates the shape of the 
strength distribution curves of specimens that 
survive the proof test cycle. As illustrated in Fig. 
8a, the effect is most pronounced when the slope 
of the strength degradation curve is slightly 
greater than the slope of the line that represent 
the boundary between Region I and Region II 
crack propagation. From Equation 5, we see that 
once the strength curve enters Region II, its 
curvature changes from negative (large n) to 
positive (n = 0), so that the slope decreases as S 
decreases, with the consequence that components 
with a range of initial strengths that normally 
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Figure 7 Multi-region crack growth: Air 50% r.h., 
loading rate: 1000 MPasec-' (a) Strength degradation 
map. (b) Strength distribution after proof testing. 

would have failed during the load cycle (for single 
region crack growth) now survive, but with a 
greatly reduced strength. Because of  this behaviour, 
the Weibull curves (Fig. 8b) are severely distorted. 
Instead of consisting of  two straight lines with a 
truncation stress at low probabilities (Fig. 3b), 
the Weibull curve exhibits a large plateau which 
indicates a constant cumulative failure probability 
for a fairly wide range of final strengths, Sf. There- 
fore, the probability of  finding specimens with 
strengths that lie within the strength range of the 
plateau is small. This plateau in the Weibull curve 
suggests a bimodal strength distribution with a 
small peak in the distribution at low levels of  
strength. This type of  distribution is potentially 
dangerous for materials that are intended for 
structural applications. 

The shape and position of  the plateau shown 
in Fig. 8b, is affected by  both the stress cycle 

2.0 

1.8 

1.6 

1.4 

m o 1 .2  

.=" 1.0 

0.8 

0 .6  

0.4 

0.2 

I 

(a)  

I I I I 1 I I I 

0,2 0.4 0.6 0.8 1.0 

T i m e / T o t a l  T ime  

I I I I I I I I I I | 

/ 

.5 = _ 

-1 .4  -1 .0  -0 .6  -0 .2  0 0,2 

Ln(S/S o) 

Figure 8 Multi-region crack growth: Air 50% r.h., 
loading rate: 100 MPasec-1 (a) strength degradation 
map; (b) strength distribution after proof testing. 

parameters and the crack propagation parameters. 
Although the probabifity level of the plateau is 
found to vary as o o is changed; the truncation 
strength is unaffected by  % ,  provided the stressing 
rate remains constant (Fig. 9). This result is con- 
sistent with the discussion in Section 2 and with 
Equations 10 and 12, which are also applicable to 
multi-region crack growth. Increasing the stressing 
rate almost completely eliminates the effect of  
Region II crack propagation (Fig. 7b). Conversely, 
decreasing the stressing rate suppresses the plateau 
to low probability levels (so that it does not 
appear in the diagram). The effect of  Region IX 
crack propagation on the strength distribution is 
enhanced as the width of  Region I1 is increased. 
Here, the main effect of  Region II crack growth on 
the Weibull curve is to increase the range of 
stresses over which the plateau occurs. 

With regard to proof  testing as a method of  
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assuring component reliability, a disturbing aspect 
of Region II crack propagation is that, for equiva- 
lent failure probabilities, portions of the strength 
distribution after proof testing lie at lower strength 
levels than those given by the initial distribution, 
resulting in significant probabilities of failure at 
low stresses after proof testing. This effect occurs 
for both dry test environments (Fig. 10) and moist 
test environments (Fig. 8b). The effect can result 
in either a significant strength degradation or an 
apparently unchanged strength distribution as a 
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n = 120.9, l n A  = - -  1641.4. Weibull parameters:  S O = 
126.9 MPasec -1 ; m  = 7.7. 

result of the proof test (high pro0abluty region of 
Fig. 8b). Effects such as these have been reported 
in Part I of this study and have a plausable expla- 
nation in terms of Region II crack propagation. 
For practical purposes, elimination of these effects 
can be accomplished most easily by increasing the 
rate of unloading during a proof test. Thus, even 
for a relatively moist environment, rapid unloading 
(Fig. 7b) leads to a distribution after proof testing 
that is sharply truncated and is better than the 
initial distribution at all probability levels. Equation 
10, with O.mi n = Op, provides a quantiffttive 
estimate of the unloading rate needed for effective 
truncation of the strength distribution curve in a 
moist environment such as air [7]. 

As a final comment, referring to the discussion 
at the end of Part I of this paper, it is noted that the 
theory presented in this part provides the basis for 
understanding strength degradation of ceramic 
materials. The theory has been used in Part I to 
explain the general shape of strength distribution 
resulting from proof testing. The fact that detailed 
agreeement between theory and some experiments 
was not obtained suggests that our understanding 
of subcritical crack growth in specimens that 
contain small cracks (e.g. < 10~m) is not com- 
plete, and requires further research. The discussions 
presented in this part of the paper should help in 
interpreting any new data. 
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